Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 84
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Anal Chem ; 96(15): 5985-5991, 2024 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-38557031

RESUMEN

Super-resolution fluorescence imaging is a crucial method for visualizing the dynamics of the cell membrane involved in various physiological and pathological processes. This requires bright fluorescent dyes with excellent photostability and labeling stability to enable long-term imaging. In this context, we introduce a buffering-strategy-based cyanine dye, SA-Cy5, designed to identify and label carbonic anhydrase IX (CA IX) located in the cell membrane. The unique feature of SA-Cy5 lies in its ability to overcome photobleaching. When the dye on the cell membrane undergoes photobleaching, it is rapidly replaced by an intact probe from the buffer pool outside the cell membrane. This dynamic replacement ensures that the fluorescence intensity on the cell membrane remains stable over time. Under the super-resolution structured illumination microscopy (SIM), the cell membrane can be continuously imaged for 60 min with a time resolution of 20 s. This extended imaging period allows for the observation of substructural dynamics of the cell membrane, including the growth and fusion of filamentous pseudopodia and the fusion of vesicles. Additionally, this buffering strategy introduces a novel approach to address the issue of poor photostability associated with the cyanine dyes.


Asunto(s)
Colorantes Fluorescentes , Imagen Óptica , Carbocianinas/química , Colorantes Fluorescentes/química , Membrana Celular
2.
Anal Chem ; 96(11): 4709-4715, 2024 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-38457637

RESUMEN

The varied functions of lipid droplets, which encompass the regulation of lipid and energy homeostasis, as well as their association with the occurrence of various metabolic diseases, are intricately linked to their dynamic properties. Super-resolution imaging techniques have emerged to decipher physiological processes and molecular mechanisms on the nanoscale. However, achieving long-term dynamic super-resolution imaging faces challenges due to the need for fluorescent probes with high photostability. This paper introduces LD-CF, a "buffering probe" for imaging lipid droplet dynamics using structured illumination microscopy (SIM). The polarity-sensitive LD-CF eliminates background fluorescence with a "cyan filter" strategy, enabling wash-free imaging of lipid droplets. In the fluorescent "off" state outside droplets, the probes act as a "buffering pool", replacing photobleached probes inside droplets and enabling photostable long-term SIM imaging. With this probe, three modes of lipid droplet fusion were observed, including the discovery of fusion from large to small lipid droplets. Fluorescence intensity tracking also revealed the direction of lipid transport during the lipid droplet fusion.


Asunto(s)
Colorantes Fluorescentes , Gotas Lipídicas , Colorantes Fluorescentes/metabolismo , Gotas Lipídicas/metabolismo , Microscopía Fluorescente/métodos , Transporte Biológico , Lípidos
3.
Adv Sci (Weinh) ; 11(15): e2309743, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38326089

RESUMEN

In the realm of cell research, membraneless organelles have become a subject of increasing interest. However, their ever-changing and amorphous morphological characteristics have long presented a formidable challenge when it comes to studying their structure and function. In this paper, a fluorescent probe Nu-AN is reported, which exhibits the remarkable capability to selectively bind to and visualize the nucleolus morphology, the largest membraneless organelle within the nucleus. Nu-AN demonstrates a significant enhancement in fluorescence upon its selective binding to nucleolar RNA, due to the inhibited twisted intramolecular charge-transfer (TICT) and reduced hydrogen bonding with water. What sets Nu-AN apart is its neutral charge and weak interaction with nucleolus RNA, enabling it to label the nucleolus selectively and reversibly. This not only reduces interference but also permits the replacement of photobleached probes with fresh ones outside the nucleolus, thereby preserving imaging photostability. By closely monitoring morphology-specific changes in the nucleolus with this buffering fluorogenic probe, screenings for agents are conducted that induce nucleolar stress within living cells.


Asunto(s)
Nucléolo Celular , ARN , Nucléolo Celular/metabolismo , ARN/metabolismo
4.
Chem Commun (Camb) ; 60(11): 1424-1427, 2024 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-38205525

RESUMEN

In this study, we have uncovered that trifluoroethylamine-substituted solvatochromic fluorophores maintain consistently high and stable fluorescence intensity in diverse polar environments, including highly polar and protic solvents. The 1,8-naphthalimide derivatives serve as a buffering fluorogenic indicator for lipid droplet morphology during the fusion process and ratiometric probe for microenvironment polarity based on Halo-tag technology.

5.
Chem Sci ; 14(18): 4786-4795, 2023 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-37181777

RESUMEN

Imaging amyloid-beta (Aß) aggregation is critical for understanding the pathology and aiding the pre-symptomatic intervention of Alzheimer's disease (AD). Amyloid aggregation consists of multiple phases with increasing viscosities and demands probes with broad dynamic ranges and gradient sensitivities for continuous monitoring. Yet, existing probes designed based on the twisted intramolecular charge transfer (TICT) mechanism mainly focused on donor engineering, limiting the sensitivities and/or dynamic ranges of these fluorophores to a narrow window. Herein, using quantum chemical calculations, we investigated multiple factors affecting the TICT process of fluorophores. It includes the conjugation length, the net charge of the fluorophore scaffold, the donor strength, and the geometric pre-twisting. We have established an integrative framework for tuning TICT tendencies. Based on this framework, a platter of hemicyanines with varied sensitivities and dynamic ranges is synthesized, forming a sensor array and enabling the observation of various stages of Aß aggregations. This approach will significantly facilitate the development of TICT-based fluorescent probes with tailored environmental sensitivities for numerous applications.

6.
Angew Chem Int Ed Engl ; 62(39): e202306061, 2023 Sep 25.
Artículo en Inglés | MEDLINE | ID: mdl-37246144

RESUMEN

Single-molecule localization microscopy (SMLM) has found extensive applications in various fields of biology and chemistry. As a vital component of SMLM, fluorophores play an essential role in obtaining super-resolution fluorescence images. Recent research on spontaneously blinking fluorophores has greatly simplified the experimental setups and extended the imaging duration of SMLM. To support this crucial development, this review provides a comprehensive overview of the development of spontaneously blinking rhodamines from 2014 to 2023, as well as the key mechanistic aspects of intramolecular spirocyclization reactions. We hope that by offering insightful design guidelines, this review will contribute to accelerating the advancement of super-resolution imaging technologies.

7.
Cell Chem Biol ; 30(3): 248-260.e4, 2023 03 16.
Artículo en Inglés | MEDLINE | ID: mdl-36889309

RESUMEN

It is urgent to understand the infection mechanism of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) for the prevention and treatment of COVID-19. The infection of SARS-CoV-2 starts when the receptor-binding domain (RBD) of viral spike protein binds to angiotensin-converting enzyme 2 (ACE2) of the host cell, but the endocytosis details after this binding are not clear. Here, RBD and ACE2 were genetically coded and labeled with organic dyes to track RBD endocytosis in living cells. The photostable dyes enable long-term structured illumination microscopy (SIM) imaging and to quantify RBD-ACE2 binding (RAB) by the intensity ratio of RBD/ACE2 fluorescence. We resolved RAB endocytosis in living cells, including RBD-ACE2 recognition, cofactor-regulated membrane internalization, RAB-bearing vesicle formation and transport, RAB degradation, and downregulation of ACE2. The RAB was found to activate the RBD internalization. After vesicles were transported and matured within cells, RAB was finally degraded after being taken up by lysosomes. This strategy is a promising tool to understand the infection mechanism of SARS-CoV-2.


Asunto(s)
COVID-19 , SARS-CoV-2 , Humanos , Enzima Convertidora de Angiotensina 2 , Endocitosis , Microscopía , Unión Proteica , Glicoproteína de la Espiga del Coronavirus/química
8.
ACS Appl Mater Interfaces ; 14(46): 52025-52034, 2022 Nov 23.
Artículo en Inglés | MEDLINE | ID: mdl-36349940

RESUMEN

Diffusion limitation and acid deficiency are two main challenges that the ZSM-48 zeolite faces in practical application. To date, there have been few effective strategies to solve both problems, simultaneously. Also, it is also a challenge to construct a hollow structure in a one-dimensional (1D) zeolite. Herein, an Al-rich ZSM-48 zeolite with a hollow structure is constructed through an alumination-recrystallization strategy, thereby solving the problems related to diffusion and acidity simultaneously. The hollowness and enrichment of aluminum can be controlled by judiciously matching the desilication and recrystallization. The silica to alumina ratio (SAR) of the ZSM-48 zeolite can be tuned from 130 to 45, which breaks the SAR limitation of conventional synthesis. On the basis of the different characterization results, the whole crystallization can be divided into two stages: rapid desilication-alumination and time-consuming recrystallization. In the selective desilication-recrystallization process, the preferential special distribution of the organic template leads to the formation of a hollow structure and the healing of mesopores at the outer shell, as evidenced by structured illumination microscopy images. Due to the enhancement in diffusion ability and acid density, the obtained hollow Al-rich ZSM-48 zeolite exhibits excellent catalytic stability and high p-xylene yield (∼26%) in the m-xylene isomerization reaction (WHSV = 18 h-1), indicating its strong industrial application potential.

9.
J Am Chem Soc ; 144(46): 21408-21416, 2022 Nov 23.
Artículo en Inglés | MEDLINE | ID: mdl-36303461

RESUMEN

Olefin selectivity and catalyst lifetime are two key metrics for industrial methanol-to-olefin catalysts. Currently, it is very difficult to obtain high olefin selectivity and long catalyst lifetime at the same time. Herein, a feasible strategy combining precoking and steaming to directionally construct the active naphthalenic species within the crystal center of the SAPO-34 catalyst has been developed, which can not only promote the lower olefin selectivity to ∼89% (ethylene and propylene) but also prolong the catalyst lifetime by ∼3.7-fold in the methanol-to-olefin conversion. Structured illumination microscopy, in situ ultraviolet-visible spectroscopy, and online mass spectrometry elucidate the spatiotemporal distribution and evolution of the naphthalenic species during the precoking and steaming processes. This one-stone-two-birds strategy is applicable to a commercial SAPO-34 catalyst containing a binder, demonstrating its bright prospect in the methanol-to-olefin industry.

10.
Natl Sci Rev ; 9(9): nwac151, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-36168443

RESUMEN

Establishing a comprehensive understanding of the dynamical multiscale diffusion and reaction process is crucial for zeolite shape-selective catalysis and is urgently demanded in academia and industry. So far, diffusion and reaction for methanol and dimethyl ether (DME) conversions have usually been studied separately and focused on a single scale. Herein, we decipher the dynamical molecular diffusion and reaction process for methanol and DME conversions within the zeolite material evolving with time, at multiple scales, from the scale of molecules to single catalyst crystal and catalyst ensemble. Microscopic intracrystalline diffusivity is successfully decoupled from the macroscopic experiments and verified by molecular dynamics simulation. Spatiotemporal analyses of the confined carbonaceous species allow us to track the migratory reaction fronts in a single catalyst crystal and the catalyst ensemble. The constrained diffusion of DME relative to methanol alleviates the high local chemical potential of the reactant by attenuating its local enrichment, enhancing the utilization efficiency of the inner active sites of the catalyst crystal. In this context, the dynamical cross-talk behaviors of material, diffusion and reaction occurring at multiple scales is uncovered. Zeolite catalysis not only reflects the reaction characteristics of heterogeneous catalysis, but also provides enhanced, moderate or suppressed local reaction kinetics through the special catalytic micro-environment, which leads to the heterogeneity of diffusion and reaction at multiple scales, thereby realizing efficient and shape-selective catalysis.

11.
Natl Sci Rev ; 9(9): nwac146, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-36128451

RESUMEN

The OXZEO (oxide-zeolite) bifunctional catalyst concept has enabled selective syngas conversion to a series of value-added chemicals and fuels such as light olefins, aromatics and gasoline. Herein we report for the first time a dynamic confinement of SAPO-17 cages on the selectivity control of syngas conversion observed during an induction period. Structured illumination microscopy, intelligent gravimetric analysis, UV-Raman, X-ray diffraction, thermogravimetry and gas chromatography-mass spectrometer analysis indicate that this is attributed to the evolution of carbonaceous species as the reaction proceeds, which gradually reduces the effective space inside the cage. Consequently, the diffusion of molecules is hindered and the hindering is much more prominent for larger molecules such as C4+. As a result, the selectivity of ethylene is enhanced whereas that of C4+ is suppressed. Beyond the induction period, the product selectivity levels off. For instance, ethylene selectivity levels off at 44% and propylene selectivity at 31%, as well as CO conversion at 27%. The findings here bring a new fundamental understanding that will guide further development of selective catalysts for olefin synthesis based on the OXZEO concept.

12.
Cancers (Basel) ; 14(16)2022 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-36010914

RESUMEN

Cholangiocarcinoma (CCA) is a multifactorial malignant tumor of the biliary tract, and the incidence of CCA is increasing in recent years. At present, the diagnosis of CCA mainly depends on imaging and invasive examination, with limited specificity and sensitivity and late detection. The early diagnosis of CCA always faces the dilemma of lacking specific diagnostic biomarkers. Non-invasive methods to assess the degree of CAA have been developed throughout the last decades. Among the many specimens looking for CCA biomarkers, bile has gotten a lot of attention lately. This paper mainly summarizes the recent developments in the current research on the diagnostic biomarkers for CCA in human bile at the levels of the gene, protein, metabolite, extracellular vesicles and volatile organic compounds.

13.
Angew Chem Int Ed Engl ; 61(34): e202208678, 2022 08 22.
Artículo en Inglés | MEDLINE | ID: mdl-35770857

RESUMEN

The visualization of self-assembled structure and dynamics at the molecular level has become a powerful method to understand structure-function relationships of self-assembly. Herein, we in situ real-time imaged the dynamic process of benzyl-naphthalimide dyes at the nanoscale and inspected their internal structure with minimum 2.8 nm localization accuracy through single-molecule localization microscopy (SMLM) imaging. We monitored the growth process of three different assemblies in situ, which possessed highly heterogeneous dynamics with different shapes and growth rates. Furthermore, diverse growth rates were also found at different sites in the same assembly. These results highlight the application of super-resolution microscopy techniques for real-time visualization of internal assembled structure and dynamics in situ.


Asunto(s)
Colorantes Fluorescentes , Imagen Individual de Molécula , Colorantes Fluorescentes/química , Microscopía , Imagen Individual de Molécula/métodos
14.
Phys Chem Chem Phys ; 24(26): 15937-15944, 2022 Jul 06.
Artículo en Inglés | MEDLINE | ID: mdl-35727090

RESUMEN

Long-wavelength fluorescent proteins (LWFPs) and LWFP-based sensors are indispensable tools for bioimaging and biosensing applications. However, it remains challenging to develop LWFPs with outstanding brightness and/or sensitivities, largely due to the lack of simple and effective molecular design strategies. Herein, we rationalized the molecular origins of a multi-donor strategy that affords significant bathochromic shifts and large Stokes shifts with minimal structural changes in the resulting protein fluorophores. We analyzed three key factors that affect the spectral properties of these fluorophores, including the (1) substituent position, (2) electron-donating strength, and (3) number of electron-donating groups. We further demonstrated that this simple design strategy is generalizable to various fluorophore families. We expect that this work can provide rational guidelines for developing fluorescent proteins (and small-molecule fluorophores) with long emission wavelengths and large Stokes shifts.


Asunto(s)
Electrones , Colorantes Fluorescentes , Colorantes Fluorescentes/química , Humanos
16.
Angew Chem Int Ed Engl ; 61(30): e202203903, 2022 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-35590467

RESUMEN

The applications of nanoporous crystalline materials are closely related to the mass transfer of guest molecules. However, the fundamental knowledge of mass transfer, and in particular the surface barriers controlled by the permeation of guest molecules through the external surfaces of materials, is still incomplete. The diversity of surface permeability at the single-crystal level, caused by the varying origins of surface transport resistance, hinders the rational materials design and needs better understanding. Herein, we probe the molecular transport in single zeolite crystals with fluorescent 4-(4-diethylaminostyryl-1-methylpyridinium iodide) (DAMPI) using super-resolution structured illumination microscopy (SIM). It showed that both the inter- and intra-crystal diversity of surface barriers could be monitored by detecting the diffusion behaviors on the center and surface planes in single crystals. This adds a new perspective for studying the origins of the surface barriers as well as the molecular transport mechanisms in nanoporous materials.

17.
Angew Chem Int Ed Engl ; 61(21): e202202961, 2022 05 16.
Artículo en Inglés | MEDLINE | ID: mdl-35263485

RESUMEN

Long-term super-resolution imaging appears to be increasingly important for unraveling organelle dynamics at the nanoscale, but is challenging due to the need for highly photostable and environment-sensitive fluorescent probes. Here, we report a self-blinking fluorophore that achieved 12 nm spatial resolution and 20 ms time resolution under acidic lysosomal conditions. This fluorophore was successfully applied in super-resolution imaging of lysosomal dynamics over 40 min. The pH dependence of the dye during blinking made the fluorophore sensitive to lysosomal pH. This probe enables simultaneous dynamic and pH recognition of all lysosomes in the entire cell at the single-lysosome-resolved level, which allowed us to resolve whole-cell lysosome subpopulations based on lysosomal distribution, size, and luminal pH. We also observed a variety of lysosome movement trajectories and different types of interactions modes between lysosomes.


Asunto(s)
Parpadeo , Colorantes Fluorescentes , Colorantes Fluorescentes/metabolismo , Células HeLa , Humanos , Concentración de Iones de Hidrógeno , Lisosomas/metabolismo
18.
Angew Chem Int Ed Engl ; 61(14): e202200546, 2022 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-35107202

RESUMEN

Although doping can induce room-temperature phosphorescence (RTP) in heavy-atom free organic systems, it is often challenging to match the host and guest components to achieve efficient intersystem crossing for activating RTP. In this work, we developed a simple descriptor ΔE to predict host molecules for matching the guest RTP emitters, based on the intersystem crossing via higher excited states (ISCHES) mechanism. This descriptor successfully predicted five commercially available host components to pair with naphthalimide (NA) and naphtho[2,3-c]furan-1,3-dione (2,3-NA) emitters with a high accuracy of 83 %. The yielded pairs exhibited bright yellow and green RTP with the quantum efficiency up to 0.4 and lifetime up to 1.67 s, respectively. Using these RTP pairs, we successfully achieved multi-layer message encryption. The ΔE descriptor could provide an efficient way for developing doping-induced RTP materials.

19.
Spectrochim Acta A Mol Biomol Spectrosc ; 268: 120662, 2022 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-34865976

RESUMEN

Ring-opening reaction of rhodamine spirolactam has been widely applied to construct fluorescent probes. The fluorescence properties of the probe were finely tuned for specific purpose through changing the rhodamine fluorophore. However, the influence on response range and kinetic parameters of the probe during the change has been seldom discussed. Herein, we took pH detection as an example and constructed spirolactam based probes (RLH A-C) with Rhodamine 6G, Rhodamine B and Rhodamine 101. The pKa values and observed rate constant kobs of RLH A-C were determined and found to negatively correlated with the calculated Gibbs free energy differences ΔGC-O and ΔGTS respectively. The potential applications of RLH A-C in imaging acidic microenvironment were also investigated in cells. We expect the comparison of rhodamine fluorophores will facilitate the quantitative optimization of rhodamine spirolactam based fluorescent probes.


Asunto(s)
Colorantes Fluorescentes , Concentración de Iones de Hidrógeno , Rodaminas
20.
Chem Soc Rev ; 50(22): 12656-12678, 2021 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-34633008

RESUMEN

The twisted intramolecular charge transfer (TICT) mechanism has guided the development of numerous bright and sensitive fluorophores. This review briefly overviews the history of establishing the TICT mechanism, and systematically summarizes the molecular design strategies in modulating the TICT tendency of various organic fluorophores towards different applications, along with key milestone studies and representative examples. Additionally, we also succinctly review the twisted intramolecular charge shuttle (TICS) and twists during photoinduced electron transfer (PET), and compare their similarities and differences with TICT, with emphasis on understanding the structure-property relationships between the twisted geometries and how they can directly affect the fluorescence of the molecules. Such structure-property relationships presented herein will greatly aid the rational development of fluorophores that involve molecular twisting in the excited state.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...